
Solutions to Physics 226: Problem Set #1

1. Relativistic expressions relevant for accelerator performance

(a) The center-of-mass energy for two particles with masses m1 and m2

is

s = E2
cm = (P1 + P2)2 = m2

1 +m2
2 + 2E1E2 − 2~p1 · ~p2

where the Pi are the particle 4-momenta and ~pi’s are the particle

3-momenta.

For the center-of-mass case, ~p2 = −~p1 and pi =
√
E2

i −m2
i . Thus

s = m2
1 +m2

2 + 2E1E2

1 +

√√√√(1− m2
1

E2
1

)(1− m2
2

E2
2

)

(b) If the masses are small compared to their energies

s = 4E1E2 +m2
1(1− E2

E1

) +m2
2(1− E1

E2

)

Neglecting masses completely

s = 4E1E2

Ecm =
√

4E1E2

In the lab frame, (M2 at rest)

s = (E1 +m2)2 − p2
1

= m2
1 + 2m2E1 +m2

2

If the masses are small

s = 2m2E1

(c) i. Neglecting the electron and positron masses, the boost of the

center-of-mass is given by

β =
ptot
Etot

=
E1 − E2

E1 + E2

1

where E1 and E2 are the lab energies of the electron and positron.

Using

4E1E2 = M2
Υ

and

βγ =
ptot
Ecm

=
E1 − E2

MΥ

we can solve to get

E1 =
MΥ

2

(
βγ +

√
β2γ2 + 1

)
≈ 9 GeV

E2 =
MΥ

2

(
−βγ +

√
β2γ2 + 1

)
≈ 3.1 GeV

ii. The momentum of the B in the center-of-mass frame is very close

to zero. So, the momentum in the lab frame is set by the boost

βγ = 0.065 in the beam direction. The mean decay distance is

therefore

< L >= βγcτ0 ≈ 260µm

iii. In the center-of-mass of the B meson, both pions have equal and

opposite momentum and E = mB/2. The angle in the lab will

depend on the decay angle with respect to the beamline

plabz = γB(pBz + βBE) ≈ γBE(β cos θ + 1)

where we have ignored the pion mass relative to its momentum.

The maximum boost is when the π is moving in the direction of

the B

βmax =
βΥ + βB
1− βΥβB

= 0.57

The minimum boost is in the opposite direction

βmin =
βΥ − βB
1 + βΥβB

= 0.41

The extreme values of the momenta are:

pmax =
mB

2
γmax(1 + βmax) ≈ 5.0 GeV

pmin =
mB

2
γmin(1− βmin) ≈ 1.7 GeV

2

2. Particle ID using a time-of-flight detector

(a) For ultrarelativistic particles (m1,m2 << p) the time of flight is

t =
`

v
=
`

c

E

pc

where E is the energy and p is the momentum of the particle. Thus

for two particles with the same momentum and different masses

∆t = t1 − t2 =
`

c

√

(pc)2 + (m1c)2

pc
−

√
(pc)2 + (m2c2)2

pc

Taylor expanding

√
(pc)2 + (mc2)2 = pc

√
1 + (mc2)2/(pc)2 = p(1 +

1
2
(mc)2/(pc)2 + ...) we find

∆t =
`

2c

(m1c
2)2 − (m2c

2)2

(pc)2

setting c = 1 we get:

∆t =
`

2

(m1)2 − (m2)2

p2

(b) A 90% confidence level separation corresponds to 1.64σ for a two-

sided cut. However, since we are only cutting on one side of the

Gaussian, we should ask that 10% of the events be in one tail (so

20% in both tails). That corresponds to 1.28σ from each peak, or

2.56 σ between the peaks, as shown here:

3

So we are looking for the momentum where the time difference ∆t =

2.56× 100ps which means:

(pc)2 =
`

2c

(m1c
2)2 − (m2c

2)2

∆t

(pc) =

√√√√ 1.40m

6× 108m/s

(0.4942 − 0.1402)GeV2

258× 10−12s

p = 1.43GeV/c

(c) First, we find the separation in time of arrival of the π and K:

∆t =
1.4

6× 108

(0.4942 − 0.1402)GeV2

(1.5GeV/c)2
= 2.33× 10−10 sec = 233 ps

Thus, if the mean time of arrival of the π is -233 ps, the mean time of

arrival of the K is 0 ps. In each case, the arrival time is Gaussianly

distributed with a σ = 100 ps. If we call everything a K that arrives

after time T , then the purity of the sample is:

p(K) =

∫∞
T dt e−

t2

2σ2∫∞
T dt e−

t2

2σ2 + 3
∫∞
T dt e−

(t+233)2

2σ2

=
erfc(T/

√
2σ)

((erfc((T/
√

2σ) + 3(erfc((t+ 233)/
√

2σ)

We can solve for T numerically (eg using Mathematica). The answer

is 150 ps. The efficiency of this cut is 0.79.

4

3. A Monte Carlo Model of Electromagnetic Showers

Here is the distribution for 1 GeV showers

Number of Radiation Lengths

0 2 4 6 8 10 12 14 16 18 20 22

M
ea

n
N

um
be

r
of

 C
ha

rg
ed

 P
ar

tic
le

s

0

2

4

6

8

10

12

14

16

18

Here is the distribution for 10 GeV showers

Number of Radiation Lengths

0 2 4 6 8 10 12 14 16 18 20 22

M
ea

n
N

um
be

r
of

 C
ha

rg
ed

 P
ar

tic
le

s

0

20

40

60

80

100

120

140

I did this problem using Root. Here is the code I used:

#include <iostream>

#include <vector>

#include "TRandom.h"

#include "TProfile.h"

5

using std::cout;

using std::endl;

using std::vector;

class aShowerParticle{

public:

double zBeg;

double zEnd;

double Einit;

int Charge;

aShowerParticle() {zBeg=0.0;zEnd=0.0;Einit=0.0; Charge=0;}

aShowerParticle(double beg,double end,double e, int q)

{zBeg=beg;zEnd=end;Einit=e; Charge=q;}

~aShowerParticle() {}

};

// Eincident is in GeV

void EMShower(int numEvt, double Eincident) {

// Here we declare all the physical constants

double Radlen=7.39/8.30; // gm/cm**2 /gm/cm**3 = cm

double dEdxGeVperCm = 1.229*8.30*1.0e-3; //MeV cm2/gm * gm/cm*3 *10-3 GeV/MeB = GeV/cm

double length=22.4; //depth of the crystal cm

// Make a profile histogram to store the showers

TProfile* hProf = new TProfile("hprof","Mean number of charged particles vs depth",100,0.0,length);

hProf->SetXTitle("Number of Radiation Lengths");

hProf->SetYTitle("Mean Number of Charged Particles");

double bincenter[100];

for(int bin=0;bin<100; bin++) {

bincenter[bin] = (0.5+bin)*length/100;

}

6

cout << "The requested number of events is: " << numEvt << endl;

// Instantiate the random number generator

TRandom* random = new TRandom;

vector<double> mydata;

double Zinteraction, Zstart;

// aShower is a collection of all the particles produced in a shower

// activeParticles is a collection of those still alive

// note; both these contain pointers to the same objects

// aShower owns the objects and will delete them

// failure to delete would cause a memory leak

vector<aShowerParticle*> aShower;

vector<aShowerParticle*> activeParticles;

for (int i=0; i<numEvt; i++) {

cout << " Event " << i << endl;

// Create our incident particle

aShowerParticle* part = new aShowerParticle(0.0,0.0,Eincident,1);

// and add it to the shower and the list of active paticles

activeParticles.push_back(part);

aShower.push_back(part);

vector<aShowerParticle*>::iterator iter;

// We’ll keep going until we run out of particles

while(activeParticles.size()>0) {

// Let’s start by looking at the first particle in the list

iter = activeParticles.begin();

// Electrons and photons assumed to have exponential distribution to the next brem

// with argument of the exponential=Radlen

// Photons convert with exponential distribution

// with argument of the exponential=(9/7)Radlen

if((*iter)->Charge!=0) {

Zinteraction = random->Exp(Radlen);

}

7

else {

Zinteraction = random->Exp(9.0*Radlen/7.0);

}

Zstart = (*iter)->zBeg+Zinteraction;

// For charged particles, check how much energy they loose to ionization

// to make sure that they don’t stop before the next interaction

if((*iter)->Charge!=0 &&

Zinteraction*dEdxGeVperCm > (*iter)->Einit){

// The particle stops in the crystal. Kill it at the point it stops

(*iter)->zEnd = (*iter)->zBeg+((*iter)->Einit)/dEdxGeVperCm;

activeParticles.erase(iter);

}

else if(Zstart>=length) {

// The next interaction is after the end of the crystal: Terminate

(*iter)->zEnd=length;

activeParticles.erase(iter);

}

else {

// The next interaction is in the crystal: Replace the particle with

// its interaction products

(*iter)->zEnd=Zstart;

double Eeach;

int q1,q2;

// photons produce e+e- pairs

if((*iter)->Charge==0) {

Eeach=((*iter)->Einit)/2.0;

q1=1;

q2=-1;

}

// e^+ and e^- undergo brem. We will delete the original

// e^+ or e^- and replace it with a a new one plus a photon

else {

Eeach=((*iter)->Einit-dEdxGeVperCm*Zinteraction)/2.0;

8

q1=(*iter)->Charge;

q2=0;

}

activeParticles.erase(iter);

aShowerParticle* part1 = new aShowerParticle(Zstart,0.0,Eeach,q1);

activeParticles.push_back(part1);

aShower.push_back(part1);

aShowerParticle* part2 = new aShowerParticle(Zstart,0.0,Eeach,q2);

activeParticles.push_back(part2);

aShower.push_back(part2);

} // end of test on whether particle interacts

} // No more particles to propagate

// Make histogram of number of particles here and then free the memory

int nCh=0;

int nChinBin[100];

for(int bin=0; bin<100; bin++) {nChinBin[bin]=0;}

for(iter=aShower.begin(); iter!=aShower.end(); iter++){

if((*iter)->Charge!=0) {

nCh++;

for(int bin=0;bin<100;bin++) {

if(((*iter)->zBeg) < bincenter[bin] && ((*iter)->zEnd) > bincenter[bin]) {

nChinBin[bin]++;

}

}

}

}

for(iter=aShower.begin(); iter!=aShower.end(); iter++){

delete *iter;

}

aShower.clear();

for(int bin=0; bin<100; bin++) {hProf->Fill(bincenter[bin],nChinBin[bin],1.0);}

} // end of loop over events

cout << " All events complete" << endl;

9

hProf->Draw();

} //End of macro

10

